MUSE 2018

Report Designer – Lists within Lists and Loops within Loops

NPR arrays – sparse, multi-dimensional, random-access arrays
RD Lists -- somewhat basic (read-random; write-sequential)
Visualize a list as:
{This,That,TheOtherThing}

which is in fact how RD will print a list on a report, although the brackets and commas are represented internally by unprintable characters (not required to know, but Ascii 1 for ‘{‘, Ascii 2 for ‘}’, Ascii 3 for ‘,’)
Basic operations available on lists: Insert (at front), Join (at end), Sort(SeriesAscending/Descending), Count number of elements, Locate and Extract (Compute Offset n)
In the list above, we can easily perform a search for This, That, or TheOtherThing, finding them respectively in positions 0, 1, and 2. (Position numbers in both List and Free Text operations begin from zero.)
Hindrance: Inserting/updating in place is not supported -- writing is sequential (at either end of a list)
If we wanted to replace “That” in the list above, first we would have to find its position (1), then loop through the list, one position at a time, constructing a new list with the the original elements in each position other than the found position, where the replacement would be added to the new list. Then at the end of that loop, overwrite the original list with the temporary one.
This assumes only the first such element would be replaced. To replace all occurrences, the comparison to “That” would occur for each element, within the loop, and the choice of replacement or original made on the basis of each comparison rather than a fixed found position.
Searching nested lists is a bit un-intuitive
Given a list containing other lists, e.g. {{Provider,This,That},{Provider2,This2,That2},{Provider3,...},…}
We can search the containing list for another list containing any number of elements of a sublist, in order, up to an entire sublist. That is, in the list above, a search for any of these lists:
{Provider2,This2,That2}
{Provider2,This2}
{Provider2}
would return the same position (1, since we number positions starting from zero in Lists and Free Text.)
[bookmark: _GoBack]
More than that: The lists {nil,This2,That2}, {nil,nil,That2}, {nil}, {nil,nil}, and {nil,nil,nil} would ALL be found in the containing list (the latter 3 lists would be found in the ‘zeroth’ position first, because that sublist also matches those patterns; that is, there exists a sublist in the ‘zeroth’ position with [at least] 1, 2 and 3 elements, respectively). Trailing nils are not necessary, but too many would not find a match: {Provider2,This2,That2,nil} would not find a match, nor would {nil,nil,nil,nil}, as there are no 4-element sublists.
What is notable is that just searcing for “Provider2” as free text alone, will return MEDITECH’s convention for Not Found: the count of elements in the searched list. The converse is also true, of course – if the list contained NO sublists, searching it for a list of any sort would not find a match (one would hope.)
So, to find a sublist, we have to search for a list containing the value(s) to be searched for, in the position(s) they’re expected to be found; that is, the searched-for value(s) constructed AS a list: e.g., {“Provider2”}. Although the list {“Provider2”}, as a whole, never occurs in the containing list, a search for it will nevertheless return the correct position of the (first) sublist containing “Provider2” as its first (‘zeroth’) element.
In summary: Searching a list for another list will return the first match where the found list matches all non-nil elements in the searched-for list, in their correct positions; any nil-valued elements in the searched-for list will also match ANY element in their corresponding positions, and there MUST be such an element in that position to find a match.

Nested Control Structures

Some 6.x update introduced the ability to create nested DO loops and IF statements more readily than in previous releases. Nested control structures are exactly what we need to be able to handle searching and modifying sublists effectively.
However, some releases handle them better than others. In some releases, some such nested structures will effectively terminate the rule. Sometimes we need to “flatten out” some nested control structures, to get a rule to work, or continue to work from that point. The problems usually occur with nesting layers within an enclosing IF statement: Nested IFs, IF/ELSEIFs and IF/DOs. DO/IF and nested DOs usually OK, with some cautions on the latter.
In “NPR” terms:
IF{A DO{B ...}}

Can be implemented as:

A^Z,
DO{Z&B ...}
Moving the result of expression ‘A’ to a variable ‘Z’ first, may be advisable so that subsequent statements don’t affect the test for the condition expressed by IF{A … originally. (See Flex Time grid Detail rule to see where this wasn’t done, but it’s OK…}
Or more generally
IF{A B,DO{C D},E}
IF{A^Z B},
DO{Z&C D},
IF{Z E}
Similarly, for ELSEIFs
IF{A B;
 C D,E,F}
IF{A^Z B},
IF{‘(Z)&C D,E,F}
Nested IFs in general:
IF{A B,IF{C D,IF{E F}}}
IF{A^Z B},
IF{Z&(C^X) D},
IF{Z&X&E F}
And permutations thereof. Plan out the general approach in advance, then apply transformations to get the smallest number of nested levels before coding.
DO/IF -- not usually problematic, as RD was built originally with this much nesting allowed.
Nested DO loop -- In early days, we had to wedge DOs with 'THEN IF's to insert another DO loop. M-AT structures (records) on OUTER loop crashed, and may still. Simple variable comparisons at both levels is OK, such as needed for looping on lists within lists. (See Flex Time grid report trailer example of Nested DO.)

